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Abstract

To aid in understanding the characteristics of acoustic radiation from finite cylindrical ducts with infinite
flanges, mathematical expressions of generalized radiation impedances at the open ends have been
developed. Newton’s method is used to find the complex wavenumbers of radial modes for the absorption
boundary condition. The self-radiation impedances and mutual impedances for some acoustic modes are
calculated for the ducts with rigid and absorption walls. The results show that the acoustical conditions of
the duct walls have a significant influence on the radiation impedance. The acoustical interaction between
the two open ends of the ducts cannot be neglected, especially for plane waves. To increase the wall
admittance will reduce this interference effect. This study creates the possibility for simulating the sound
field inside finite ducts in future work.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A magnetic resonance imaging (MRI) scanner provides high-resolution spatial images of
biological subjects and has become one of the most widely used diagnostic devices in the health
care and medical research field. Anyone who takes an MRI examination may feel uncomfortable
because of the high-intensity acoustic noise inside the bore of MRI scanner, which can reach 120
or 130 dB (A) [1,2]. The noise is mainly produced by the vibration of the so-called gradient coils,
which are bound together as a cylindrical duct [3].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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A mathematical model for the acoustic radiation from MRI scanners was first developed by
Kuijpers [4], who presented a model of baffled finite ducts to describe the acoustic radiation of the
gradient coils. He derived a semi-analytical formulation for the acoustic radiation of a finite duct
with open ends mounted with infinite flanges. The acoustic field inside the duct was described with
Fourier–Bessel modes. The radiation of acoustic waves at the duct’s exit was described with
generalized radiation impedance.

In duct acoustics, radiation from infinite ducts with rigid walls is well understood [5,6]. On the
other hand, the sound field inside finite ducts is difficult to calculate because of reflections of
acoustic waves at the open ends. Dock [7,8] discussed the effects of duct cross-section geometry,
source distribution space–time patterns and the termination conditions to the sound field in hard-
walled ducts of finite length. In his analyses, identical source distributions produced different
sound fields in infinite and finite ducts.

Because the acoustic radiation impedances at the opening of ducts influence both the inside and
outside sound field, they have attracted considerable interest from researchers in this field. Morse
[9] had calculated the plane wave radiation impedance for a circular opening. Felsen and Yee [10]
used the Ray method to calculate the modal reflection and coupling coefficient for flanged and
unflanged semi-infinite hard-wall circular tubes for the plane wave mode. Mofrey [11] presented
calculations of radiation efficiency of acoustic modes in a baffled annular opening. His results
showed that the variation of radiation efficiency with frequency can be generalized in terms of
mode cut-off. Based on a Helmholtz integral of acoustic radiation for the open end of a duct,
Zorumski [12] extended previous work by deriving the formula of generalized radiation
impedances for semi-infinite circular and annular ducts with an infinite flange and finite wall
acoustic admittance. An infinite-matrix equation was used to describe the relationship between
the mode reflection and impedance at the opening. Results showed that the boundary condition of
walls was a significant parameter to decide the radiation impedance. However, these
investigations were restricted to situations where ducts were of semi-infinite in length. When a
sound radiator is operating in the close proximity with other radiators, the performance of each
unit may be affected by their acoustic interaction [13]. This requires that the interaction of both
openings should be taken into consideration if the duct is finite in length and it can be described in
terms of mutual radiation impedances.

To the authors’ knowledge, no studies have been reported in the literature dealing with the
acoustical interaction between the openings of finite ducts with rigid and absorption boundary
conditions, although much work was done on the mutual impedance for radiators in semi-infinite
planes. Sherman [14] derived the expressions for the mutual radiation impedance for uniformly
vibrating circular and rectangular acoustic sources on a rigid spherical baffle. Greenspon and
Sherman [15] calculated the mutual impedance for pistons in a cylinder. The mutual acoustic
impedances of radiators and flexible disks in an infinite rigid plane were investigated by Pritchard
[13] and Chan [16], respectively. The self- and mutual-impedances of uniformly vibrating pistons
of various shapes in an infinite rigid plane were calculated by Thompson [17].

Acoustic wave propagations in ducts are quite different from the sound radiation in free fields
or semi-infinite fields. Thus the theories used in the above references cannot be directly applied for
the computation of the mutual radiation impedance for finite ducts. Although Johnston and
Ogimoto [18] found that the small oscillations in the impedance at openings for a finite-length
duct compared with that for a semi-infinite length duct and Wang and Tszeng [19] investigated the



ARTICLE IN PRESS

W. Shao, C.K. Mechefske / Journal of Sound and Vibration 286 (2005) 363–381 365
effects of acoustical interference to the radiation impedance, reflection coefficient and the far-field
radiation pattern between two ends of a finite duct for some simple situations, they did not give
detailed mathematical expressions to describe the mutual impedance.

Since most work has dealt with the radiation problem for hard-walled semi-infinite cylindrical
ducts, mathematical expressions for calculating radiation impedance for flanged finite ducts with
rigid and absorption walls are presented here. These are the extensions of the models developed by
Zorumski [12] and Kuijpers [4]. The self-radiation impedances and mutual radiation impedances
are calculated for some least-attenuated modes (normally lower orders) because these modes
determine the sound reduction under general conditions of excitation [6]. The Newton method is
used to find the complex wavenumbers of radial modes for absorption walls. This study provides a
base for computations of the sound field inside the finite ducts.
2. Theoretical models

Formulas for the radiation impedances at the openings of flanged finite cylindrical ducts will be
derived in this section. First, the acoustic model for cylindrical ducts is briefly reviewed. Then the
expression for self-radiation impedance will be presented, as there will be the reflection of acoustic
waves at the opening of ducts. Finally, the equations for the mutual radiation impedance will be
derived.
2.1. Acoustical models for cylindrical ducts

In order to describe the sound radiation of flanged finite cylindrical ducts with constant circular
cross-section, the theoretical model of generation and propagation of sound waves in such ducts
should satisfy some conditions [20]: the acoustic pressure, density and velocity must satisfy
appropriate wave equations; the pressure and the displacement of the fluid in the normal direction
near the duct walls must equal those on contacting boundaries of the duct walls; the pressure and
displacement fields on the source side and the fluid side must be continuous. Waves reflecting from
walls interfere with each other, giving interference patterns (similar to standing waves) over the
cross-section.

The acoustic field inside the duct without any source is determined by the Helmhotz equation

r2p þ k2p ¼ 0; (1)

where r2 is the Laplacian (r2 ¼ q2=qx2 þ q2=qy2 þ q2=qz2), p is the acoustic pressure in the sound
field and k is the wavenumber which is equal to o=c (o is the frequency, c is the speed of sound) in
the free field. The selection of cylindrical polar coordinates x; r; y is made for convenience when
solving a problem in a cylindrical duct and the Laplacian term is then [20]

r2 ¼
q2

qx2
þ

1

r

q
qr

r
q
qr

� �
þ

1

r2
q2

qy2
; (2)

where x is the coordinate in the axial direction of the duct, r is in the radial direction and y is in the
circumferential direction (see Fig. 1). A modal solution of this equation is (a time factor eiot is
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Fig. 1. Cylindrical polar coordinates.
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understood throughout this paper)

pðr; y;xÞ ¼
X1

m¼�1

X1
n¼1

Jmðk
mn
r rÞe�imy½Amne

�ikmn
x x þ Bmne

ikmn
x x	; (3)

where JmðkrrÞ is the Bessel function of the first kind of order m. It gives the position of nodal lines
of the pressure in the radial direction. A and B are the modal coefficients of the forward-
propagating and backward-propagating acoustic wave modes respectively. kx and kr are the
wavenumbers in the axial and the radial direction respectively (see Fig. 1); m is the number of
circumferential modes in the harmonic complex pressure amplitude and n is the number of radial
modes.

For a hard-walled cylindrical duct, the boundary condition qp=dr ¼ 0 at r ¼ a (a is the radius of
the cylindrical duct) is required. The wavenumbers of radial modes can be obtained from the roots
of the eigenequation d½JmðkrrÞ	=dðkrrÞ ¼ 0: For a certain order m, there exists a series of roots (n is
used to represent the nth root). The wavenumbers of radial and axial wave modes must satisfy the
acoustic wave equation [5]

ðkmn
x Þ

2
þ ðkmn

r Þ
2
¼ k2 (4)

when at a particular frequency, the axial wavenumber kmn
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � kmn

r

p
¼ 0: This is called the cut-

off frequency below which the particular modes cannot propagate freely in the duct. Those axial
modes above the cut-off frequency are called cut-on modes.

On the other hand, if the duct walls are not rigid but locally reactive to the pressure, the
boundary condition can be defined by an acoustic impedance Z ¼ p=un or a specific acoustic
admittance could be defined as b ¼ x� is ¼ rc=Z [6], where p is the pressure on the surface, un is
the normal surface velocity; r and c are the density and sound speed of the media respectively.
Thus the boundary is

qp

qn
¼ ikbp: (5)
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Then, the Bessel functions should satisfy [6, p. 510]

kmn
r J 0

mðk
mn
r aÞ ¼ ibkJmðk

mn
r aÞ: (6)

When the wall admittance is comparatively small (jbjkaj is considerably smaller than unity), the
approximate solution is

k01
r ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðibkaÞ

p
ðplane wavesÞ;

kmn
r ¼ qmn

r ð1�
ðsþ ixÞka

ðqmn
r aÞ2 � m2

Þ; ðma0; na1Þ; ð7Þ

where qmn
r is the wavenumber of the acoustic modes for rigid boundary conditions. kmn

r are
generally complex, so the axial wavenumbers kmn

x are also complex. Their imaginary parts then
determine the axial decay rates for the cut-on modes. If jbjkaj is not small, the kmn

r should be
calculated by numerical methods using Eq. (6).
2.2. Generalized self-radiation impedance

Acoustic waves propagating in a finite duct cannot go totally through its termination apertures.
Only a part of the acoustic energy can radiate from the open ends of the duct and the other part
will be reflected. This phenomenon is described in Fig. 2, where the Pþ;P� andP0 are the incident
wave, reflected wave and transmission wave (radiating out the duct), respectively.

The acoustic pressure and velocity amplitudes at the open ends of the duct can be expressed in
terms of the acoustic modes in radial r and circumferential y directions as

pðr; y; xÞ ¼
X1

m¼�1

e�imy
X1
n¼1

PmnJmðk
mn
r rÞ; (8)

uxðr; y; xÞ ¼
1

rc

X1
m¼�1

e�imy
X1
n¼1

VmnJmðk
mn
r rÞ; (9)
+
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+
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Fig. 2. The reflection at the open ends of cylindrical ducts.
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where Pmn and Vnm are the modal coefficients for the pressure and velocity respectively. Zorumski
[12] introduced the concept ‘‘generalized radiation impedance Z0’’ for a semi-infinite duct with an
infinite flange to describe the relation between the modal pressure and velocity amplitudes, which
could be used as the generalized self-radiation impedance for a finite duct:

Pmn ¼
X1
l¼1

Z0
mnlVml ; (10)

where l and n are the orders of radial incident and reflected modes respectively. Thus generalized
radiation impedance can be written as

Z0
mnl ¼

�i

NmnNml

Z 1

0

tffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p DmnðtÞDmlðtÞdt; (11)

Nmn ¼ ka
1

2

ððkmn
r aÞ2 � m2ÞJ2

mðk
mn
r aÞ

ðkmn
r aÞ2

þ J 02
mðk

mn
r aÞ

" #1=2
; (12)

DmnðtÞ ¼
k2a

ðkmn
r Þ

2
� t2k2

½ktJmðk
mn
r aÞJ 0

mðtkaÞ � kmn
r J 0

mðk
mn
r aÞJmðtkaÞ	: (13)

Eq. (11) shows the incident modes can be coupled with other reflection modes. And it can be
simplified as

Z0
mnl ¼

1

W

Z 1

0

t3J 02
mðtkaÞ � 2ibt2JmðtkaÞJ 0

mðtkaÞ � b2tJ2
mðtkaÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

ðt2 � ðkmn
r Þ

2=k2
Þðt2 � ðkml

r Þ
2=k2

Þ
dt (14)

with

W ¼
1

2
1�

bk

kmn
r

	 
2

�
m2

ðkmn
r aÞ2

 !" #1=2
1�

bk

kml
r

 !2
0
@

1
A�

m2

ðkml
r aÞ2

2
4

3
5

1=2

: (15)

The above integral can be split into two parts over the range (0,1) and (1,N) and with the changes
of variable t ¼ sin f and t ¼ cos x in those respective ranges, the impedance equation becomes

Z0
mnl ¼

1

W

Z p=2

0

sin3 fJ 02
mðka sin fÞ � 2ib sin2 fJmðka sin fÞJ 0

mðka sin fÞ � b2 sin f J2
mðka sin fÞ

ðsin2f� ðkmn
r Þ

2=k2
Þðsin2f� ðkml

r Þ
2=k2

Þ
df

þ
i

W

Z 1

0

cosh3xJ 02
mðka cosh xÞ � 2ibcosh2xJmðka cosh xÞJ 0

mðka cosh xÞ � b2 cosh xJ2
mðka cosh xÞ

ðcosh2f� ðkmn
r Þ

2=k2
Þðcosh2f� ðkml

r Þ
2=k2

Þ
dx:

ð16Þ

Eq. (16) is actually the expression of calculation of self-radiation impedance for a finite cylindrical
duct. When n ¼ l, Z0

mnl is called the direct self-radiation impedance; when nal; Z0
mnl is called the

coupling self-radiation impedance.
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2.3. Mutual impedance

Considering an opening interface in the one side of the duct is a source whose vibration
generates sound and it propagates to the other side producing the pressure force. The axial
velocity distribution on the interface at this opening of a finite cylindrical duct (suppose at
the left side, x ¼ �L) can be expressed in terms of the sum of acoustic modes in the circular
cross-section:

uxðr; y;�LÞ ¼ �
i

ro
qp

qx
x¼�L ¼

Xm¼1

m¼�1

e�imy
X1
n¼1

UmnJmðk
mn
r rÞ

����� : (17)

The pressure inside the duct can be written as

pðr; y;xÞ ¼
X1

m¼�1

e�imy
X1
n¼1

CmnJmðk
mn
r rÞeik

mn
x x; (18)

where Cmn is a mode coefficient. The pressure should satisfy the boundary condition at the
interference

Cmn ¼
rkcUmn

kmn
x

eik
mn
x L: (19)

Thus, the pressure of the sound field at the (m, n) mode is

pðr; y; xÞ ¼ rkc
X1

m¼�1

e�imy
X1
n¼1

Umn

kx

eik
mn
x Le�ikmn

x xJmðk
mn
r rÞ: (20)

In acoustics the radiation impedance is often defined as the ratio of a force to a velocity, but the
impedance defined by the radiation power is more generally useful. Based on the definition of
mutual radiation impedance for two radiators [16], the mutual impedance of the two open ends
could be written as

Z00 ¼
1

U
�

1U
� n

2

Z
S2

pS2

1 un

2 dS; (21)

where U1 and U2 are the amplitude of the velocity at the open ends of left and right sides,
respectively (the velocity of both open ends is assumed to have the same amplitude and be in
phase because they are symmetric to center plane x ¼ 0); * is the complex conjugate; pS2

1 is the
pressure on the right open end (S2) produced by the vibration at the interface of the left end (S1);
u2 is the velocity distribution on the right end.

Z00
mnl ¼

1

Uml
1 Umnn

2

Z
S2

pml
1 umnn

2 dS ¼
rkc

kml
x

ei2kml
x L

Z 2p

0

dy
Z a

0

Jmðk
ml
r rÞJmðk

mn
r rÞrdr: (22)
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From the result of the integration and the orthogonal property of the product of Bessel functions
[21], the above formula can be simplified to

Z00
mnl ¼

prkca2

kmn
x

ei2kmn
x L½Jmðk

mn
r aÞ2 � Jm�1ðk

mn
r aÞJmþ1ðk

mn
r aÞ	; ðn ¼ lÞ;

0; ðnalÞ:

8><
>: (23)

The total radiation impedance can be expressed as [16]

Zmnl ¼ Z0
mnl þ Z00

mnl

Umn
1

Umn
2

¼ Z0
mnl þ Z00

mnl : (24)

Thus, the sound field of the finite ducts can be calculated in terms of acoustic modes by Eq. (10),
replacing Z0

mnl by Zmnl :
3. Numerical results and discussions

The finite cylindrical duct model used here is a duct with half-length L ¼ 0:6m and radius
a ¼ 0:3m: The results for three situations of the acoustic boundary condition of the wall: rigid,
acoustic admittance b ¼ 0:1þ 0:1i and b ¼ 1þ 1i; will be presented in this section. Before the
calculation for self-radiation and mutual radiation impedances, the wavenumbers for different
radial modes satisfying the three boundary conditions should be found.

3.1. Wavenumbers for radial modes

For the hard wall (rigid boundary), the wavenumbers can be found from solutions of the
equation d½JmðkrrÞ	=dðkrrÞ ¼ 0: Then the cut-off frequencies can be obtained by letting kmn

x ¼ 0;
thus kcut-off ¼ kmn

r : Table 1 shows the cut-off frequencies in Hz for the model in this study .
For the wall with acoustic admittances b ¼ 0:1þ 0:1i and b ¼ 1þ 1i; the Newton method [22]

is used to find the roots for Eq. (6). The procedure is iterated as

ynþ1 ¼ yn �
f ðynÞ

f 0
ðynÞ

; (25)

where

f ðynÞ ¼ ynJm�1ðynÞ � mJmðynÞ � ibkaJmðynÞ; (26)
Table 1

Cut-off frequencies kcut-off in Hz corresponding to radial acoustic modes kmn
r

n m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4

1 0 332 550 757 956

2 691 961 1210 1443 1674

3 1266 1540 1798 2047 2287

4 1834 2112 2375 2632 2879
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f 0
ðynÞ ¼ Jm�1ðynÞ þ 0:5yn½Jm�2ðynÞ � JmðynÞ	 � 0:5m½Jm�1ðynÞ � Jmþ1ðynÞ	

� i0:5bka½Jm�1ðynÞ � Jmþ1ðynÞ	: ð27Þ

The initial value for this iteration is given by Eq. (7) with a smaller admittance value to improve
the convergent speed of the iteration procedure. For instance, bringing b ¼ 0:01þ 0:01i and
b ¼ 0:1þ 0:1i into Eq. (7) to generate initial values for solutions of b ¼ 0:1þ 0:1i and b ¼ 1þ 1i;
respectively.
3.2. Self-radiation impedance

Based on Eqs. (14) and (16), the self-radiation impedances for modes m ¼ 0; 1 and n ¼ 1; 2; 3
with a frequency range from 0 to 2000Hz are presented. As z ! 1; JmðzÞ ! 0; the infinite
integral in Eq. (16) is convergent. For the rigid boundary condition (b ¼ 0), t ¼ kmn

r =k ðn ¼ lÞ are
the simple poles for expressions in the integral, and it can be rewritten as (t ¼ sin f or t ¼ cosh x)

t3J 02
mðtkaÞ

ðt2 � ðkmn
r Þ

2=k2
Þðt2 � ðkml

r Þ
2=k2

Þ

�����
t¼kmn

r =k

¼
ka2J2

mðk
mn
r aÞ

4kmn
r

1�
m

kmn
r

	 
2
" #2

: (28)

The generalized direct self-radiation impedances Z0
mnl ðn ¼ lÞ for m ¼ 0 and n ¼ 1; 2; 3 are shown

in Figs. 3, 4, and 5 respectively. Their real and imaginary parts are plotted. Similar to the
definition for the specific acoustic impedance [23], the real and imaginary parts represent the
resistive and reactive components of impedances, respectively. These figures show a common
Fig. 3. Generalized direct self-radiation impedance Z0
011 (m ¼ 0; n ¼ l ¼ 1; plane wave) (a) real part and (b) imaginary

part for the duct wall with admittance values: b ¼ 0 (rigid), ; b ¼ 0:1þ 0:li; ; b ¼ 1þ li; .
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Fig. 4. Generalized direct self-radiation impedance Z0
022 (m ¼ 0; n ¼ l ¼ 2) (a) real part and (b) imaginary part for the

duct wall with admittance values: key as in Fig. 3.

Fig. 5. Generalized direct self-radiation impedance Z0
033 (m ¼ 0; n ¼ l ¼ 3) (a) real part and (b) imaginary part for the

duct wall with admittance values: key as in Fig. 3.

W. Shao, C.K. Mechefske / Journal of Sound and Vibration 286 (2005) 363–381372
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trend, in that the largest values of the impedances are increased in amplitude and move to higher
frequency at higher modes compared to the lower modes (more accurately, compared by their cut-
off frequency). The real part (resistance) of the impedance is a measure of the radiation efficiency
for the corresponding incident mode at the open ends. This indicates that the interface of the duct
open ends will be a good radiator for a certain acoustic mode just over its corresponding cut-off
frequency and the higher mode waves will more easily radiate out the duct compared to the lower
mode waves. In other words, incident waves with lower modes are generally of higher reflection
coefficients at the open end of the duct than the higher mode waves. Fig. 3 shows the real part of
the impedances for the plane wave is relatively small at low frequency and converge to unity at
higher frequency. Both the real and imaginary parts of the impedance have small oscillations at
higher frequency (4500Hz), but this does not happened for the walls with large admittance
(b ¼ 1þ 1i). It is also true in Figs. 4 and 5 that the real part of the impedances are near zero at low
frequency and increase gradually as the frequency increases over the cut-off frequency of the
corresponding mode. After passing the largest value (absolute value for the imaginary part), the
real part approaches unity and the imaginary part is close to zero.

It is obvious that the curves of the impedance for the walls with admittance b ¼ 0 and b ¼

0:1þ 0:1i are similar in general shape at all frequency ranges whereas they are quite different from
the admittance b ¼ 1þ 1i at intermediate frequencies. For instance, the real part of the impedance for
b ¼ 1þ 1i is larger than the other two cases in the frequency range from 500 to 1000Hz in Fig. 3 and
500 to 1500Hz in Fig. 4. This frequency range is expanded as the mode number is increased. The
imaginary parts show similar features. Figs. 6–8 show Z0

mnl ðn ¼ lÞ for m ¼ 1 and n ¼ 1; 2; 3
respectively and the impedances in these figures possess the same features as those found in Figs. 3–5.
Fig. 6. Generalized direct self-radiation impedance Z0
111 (m ¼ 1; n ¼ l ¼ 1) (a) real part and (b) imaginary part for the

duct wall with admittance values: key as in Fig. 3.
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Fig. 7. Generalized direct self-radiation impedance Z0
122 (m ¼ 1; n ¼ l ¼ 2) (a) real part and (b) imaginary part for the

duct wall with admittance values: key as in Fig. 3.

Fig. 8. Generalized direct self-radiation impedance Z0
133 (m ¼ 1; n ¼ l ¼ 3) (a) real part and (b) imaginary part for the

duct wall with admittance values: key as in Fig. 3.

W. Shao, C.K. Mechefske / Journal of Sound and Vibration 286 (2005) 363–381374
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Fig. 9. Generalized coupling self-radiation impedance Z0
021 (m ¼ 0; n ¼ 2 and l ¼ 1) (a) real part and (b) imaginary part

for the duct wall with admittance values: key as in Fig. 3.

Fig. 10. Generalized coupling self-radiation impedances Z0
031 (m ¼ 0; n ¼ 3 and l ¼ 1) (a) real part and (b) imaginary

part for the duct wall with admittance values: key as in Fig. 3.

W. Shao, C.K. Mechefske / Journal of Sound and Vibration 286 (2005) 363–381 375
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Fig. 11. Generalized coupling self-radiation impedances Z0
121 (m ¼ 1; n ¼ 2 and l ¼ 1) (a) real part and (b) imaginary

part for the duct wall with admittance values: key as in Fig. 3.

Fig. 12. Generalized coupling self-radiation impedances Z0
131 (m ¼ 1; n ¼ 3 and l ¼ 1) (a) real part and (b) imaginary

part for the duct wall with admittance values: key as in Fig. 3.

W. Shao, C.K. Mechefske / Journal of Sound and Vibration 286 (2005) 363–381376
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Distinct from the direct self-radiation impedance, Z0
mnlis called the coupling self-radiation

impedance when nal: Figs. 9–12 show the coupling impedances for several modes. The coupling
Z0

mnl indicates the nth radial pressure distribution generated by the lth radial velocity distribution
at the opening. It was found that the largest values of these coupling impedances are smaller than
those of the direct impedances. This means that the influence of other modes on the radiation
impedance is not as strong as that caused by itself. The amplitude for the wall with large
admittance b ¼ 1þ 1i is small, especially when n and l are far apart (see Figs. 10,11 for Z0

031 and
Z0

131). It may be concluded that the coupling factor for the large admittance can be ignored when
the two modes (n and l) are not contiguous. The largest amplitude of the coupling impedance
normally appears at the vicinity of the cut-off frequency (see Table 1).
3.3. Mutual radiation impedance

The self-radiation impedance for the finite duct is the same as the total radiation impedance of
the semi-infinite duct. Due to the acoustic interaction of the two open ends of finite ducts, their
mutual impedance should be investigated. Figs. 13–16 show the mutual impedance Z00

mnl for some
modes. The plane wave shows the largest mutual interaction and this effect decreases as the mode
number is increased. The value of the impedance is decreased as the wall admittance is increased
because the absorptive wall attenuates the sound wave propagation in the duct, thus the acoustic
interaction is reduced between the two ends. Referring to Eq. (23), it can be found that the
amplitude of the mutual impedances is proportional to the area of duct terminations.
Fig. 13. Mutual radiation impedance Z00
011 (m ¼ 0; n ¼ l ¼ 1) (a) real part and (b) imaginary part for the duct wall with

admittance values: key as in Fig. 3.
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Fig. 14. Mutual radiation impedance Z00
022 (m ¼ 0; n ¼ l ¼ 2) (a) real part and (b) imaginary part for the duct wall with

admittance values: key as in Fig. 3.

Fig. 15. Mutual radiation impedance Z00
111 (m ¼ 1; n ¼ l ¼ 1) (a) real part and (b) imaginary part for the duct wall with

admittance values: key as in Fig. 3.
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Fig. 16. Mutual radiation impedance Z00
122 (m ¼ 1; n ¼ 1 ¼ 2) (a) real part and (b) imaginary part for the duct wall with

admittance values: key as in Fig. 3.
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Theoretically there is no attenuation of the propagation for the acoustic mode waves (over the
corresponding cut-off frequencies) in the duct with a rigid wall, therefore the amplitude of the
mutual impedance is independent of the duct length in this situation. However, the amplitude
value will decrease as the duct length is increased for the duct with an acoustical absorptive wall.

From Figs. 14–16, it can be seen that the mutual impedance is zero at low frequency (o the cut-
off frequency) because the axial wavenumber kmn

x is imaginary and the waves decay quickly and
little sound energy can reach the other side of the duct. At the cut-off frequency, the amplitude of
impedances increases dramatically and oscillates around zero with a small amplitude after it
passes the cut-off frequency. It seems that the higher frequency waves can more easily propagate
in the duct with a large admittance wall than lower frequency waves because the amplitude of the
impedances for the duct wall with b ¼ 1þ 1i are slowly increased as the frequency is increased.
This phenomena is caused by the term ei2kmn

x L in Eq. (23) where the value of the imaginary part of
the axial wavenumber kmn

x for the absorptive duct wall is a little diminished as the frequency is
increased. As a result, the higher frequency modes are comparatively less attenuated by the term
kmn

x than the lower frequency modes.
4. Conclusions

The mathematical expressions of acoustical radiation impedance for flanged finite cylindrical
ducts with hard- and absorptive-walls have been presented. The acoustical interaction between the
two open ends of the ducts has been investigated. Calculations for the self-radiation and mutual



ARTICLE IN PRESS

W. Shao, C.K. Mechefske / Journal of Sound and Vibration 286 (2005) 363–381380
impedances for several modes show some useful results. The largest value of the self-radiation
impedance increases and moves to a higher frequency as the corresponding cut-off frequency is
increased; the coupling factor for the ducts with large admittance walls could be ignored; the
mutual interference between two open ends is greater for the plane wave than that of other higher
modes.

A deep understanding of the radiation impedance for the finite cylindrical ducts is very
important, because it provides the theoretical possibility for the simulation of the sound fields
inside ducts, which could be used to describe sound radiation characteristics of the gradient coils
in MRI scanners.
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